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Abstract

In this paper, we develop a model to describe the hyperelastic material behaviour of pneumatic membranes rein-
forced with roven—woven fibres. A generalized stored energy function is developed via a series of loading tests on a
representative sample of this composite material. The exponents in the effective law are chosen so as to fulfil basic
restrictions, discussed in the body of the paper, as well as to match certain experimental values. Numerical examples
demonstrate the application of the approach to inflated rubber matrix materials, as well as laminated shells. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Pneumatic membranes consist of multi-layered foils or fabric embedded in a matrix material. The fabric
is usually made of polyester-, glass-, aramide- or carbon-fibres. Common coatings are rubber, PVC or
Teflon. Frequently, such membrane structures serve as so-called “temporary” buildings (see Fig. 1). Due to
their low weight, they are easy to transport and to install. Very popular are composites of polyester fibres
and rubber coating, since these materials are relatively airtight and can be easily manufactured. The sta-
bility of structures as shown in Fig. 1 is maintained by a steady air pressure from the inside of the building.
Pneumatic membranes undergo deformations of the moderate range, the stress strain behaviour is highly
non-linear. Due to the fact that the fibres cannot carry any load in compression, we observe different
material behaviour in tension and in compression.

Concerning anisotropic material models at finite strains, some research has been focussed on biome-
chanical problems. For instance, Holzapfel et al. (1996) investigated axisymmetric orthotropic blood
vessels. Moderate deformations were also considered by Weiss et al. (1996), who modelled biological soft
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Fig. 1. Temporary building (inflated membrane structure).

tissues by means of an incompressible transversely isotropic law. A material law to describe the transversely
isotropic material behaviour of rubber has been recently derived by Riiter and Stein (1999). Bonet and
Burton (1998) developed orthotropic constitutive equations to simulate human leg impact problems. There
is, however, still no material model available for the pneumatic membranes to be investigated in the present
paper. One main difficulty is to develop a model which accounts for both tension and compression.

In Section 2, we present the basic equations and introduce the concept of structural tensors. Since ex-
perimental data for pneumatic membranes are poorly documented in the published literature, we set up a
so-called “computer model” (Section 3). Running various tests with this “virtual” testing device, we obtain
enough test data. A strain energy function is constructed upon the characteristics of these “experimental”
results. In the following, the second Piola—Kirchhoff stresses and the material tensor are derived and the
domain for the material parameters to achieve stable solutions is discussed. The formulation is further
reduced to the case of a linear orthotropic material. In Section 5, the three-dimensional (3D) finite element
formulation used in this work is discussed shortly. Section 6 provides two numerical examples which
demonstrate the accuracy and efficiency of the present formulation.

2. Basic equations

We describe the deformation of a continuous body by means of the right Cauchy—Green tensor
C=F""F, (1)

where F denotes the deformation gradient. A hyperelastic body is characterized by the existence of a scalar
potential W = W(C), the stored energy function, from which the second Piola—Kirchhoff stress tensor S is
obtained by

oW (C)

S=2—". 2)

In the case of orthotropic material behaviour, 7 (C) reduces to an isotropic function of C and the structural
tensors

M] =n XN and M2 =N X Nnp. (3)
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Fig. 2. Roven-woven structure with vectors n; (i = 1, 2).

See for a more detailed discussion the theoretical works of Boehler (1977, 1979), Liu (1982), Zhang and
Rychlewski (1990) and Svendsen (1994). The vectors n; (i = 1,2) are oriented parallel to the fibres in the
membrane as indicated in Fig. 2.

The strain energy function W can be represented in dependence of the three invariants of C,

I, :=trC, L =3I} — tr(C?)), I; :=det C, (4)
and the first invariants of C-M;, C*-M,, C-M, and C* - M,, respectively:

14 ::tr(C~M1):C:M1, 15 = tr(CZ-Ml)zczth

5
Ig:=tr(C-My)=C:M,, I :=tr(C*-M,)=C":M,. ©)
Remark. Note that the relation
3
an@nj:l’ n-n; =9y ij=123 (6)
=1
(6;; Kronecker delta) implies
M1+M2+M3:1:>M3=1—M1—M2, (7)

i.e. M3 is linear dependent on M; and M,. For this reason, M; does not have to appear as independent
variable. This corresponds to an alternative representation in standard text books like e.g. Jones (1999),
where two orthogonal material property symmetry planes are suggested to define orthotropy. Symmetry
will also exist for a third plane orthogonal to the others.

3. Computer experiments

Experimental data, although frequently found in the form of internal reports of companies, are poorly
documented in the available literature. For this reason, we set up a “‘computer testing device” to obtain
appropriate stress strain data. The material parameters of the orthotropic continuum mechanical model
will then be fitted to these “experimental” results (see Section 4).

In Fig. 3, the computer model for the fibre reinforced membrane is shown. It consists of three-dimen-
sional non-linear truss elements modelling the fibres and special low-order brick elements describing the
rubber coating. The 3D element formulation will be discussed in Section 5.

To get a representative response, 10 fibres are placed in each direction. With this two phase approach, we
are able to model the two constituents separately. For the rubber, the standard Neo-Hookean approach is
used. Test results for polyester fibres in membrane fabrics can be found in Bidmon (1989).
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Fig. 3. Computer model.

3.1. Fibre model

Fig. 4 shows the experimental data for the fibres. The strain values are given in percent and refer to the
linearized strain measure AL/L (L initial length of the test sample). The qualitative behaviour is somewhat

rubber-like, although the characteristic S-shape is observed in the small strain range. Therefore, we im-

plement an Ogden-type model (Ogden, 1972) into the truss element formulation which has the ability to

capture S-shapes. The isotropic strain energy function

v =3)+1(h),
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Fig. 4. Force-strain behaviour of fibres: (a) warp thread, (b) weft thread.
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is given in terms of the principal stretches 4; (i = 1,2,3), i.e. the eigenvalues of the right stretch tensor
U = +/C. Moreover, we restrict ourselves here to a one-dimensional consideration. Then, using the
assumption of incompressibility (1;4,4; =1 = 1, =43 = \/)»1_1 = )fl), Eq. (8) reduces to

oo =3 Br (7 424705 —3), 9)

r=1 77

and the force in the truss can be determined to be

aWOG % 0.53,
F=Ad— zz (2% = 270, (10)

where 4 denotes the initial area of the truss.

In order to use a standard (linear) least square fit, we set the exponents o, equal to some reasonable
number and compute only the “linear” parameters y,. This procedure is repeated for another choice of
exponents, until a sufficiently accurate fit of the data is obtained. Material parameter sets were calculated
for n = 1 (2 parameters) and n = 3 (6 parameters). The results are shown in Fig. 4. Note that the fibres in
the 1- (warp) and 2- (weft) direction of the membrane possess different mechanical properties. In general
good agreement is achieved for the six parameter sets. Two parameters are insufficient to model the
characteristic S-curve in the small strain range. However, this deviation of the simpler model from the
realistic behaviour is negligible, if one considers the computer model as a whole. Therefore, for simplicity,
we work with the two parameter sets. A summary of the material parameters is given in Table 1.

3.2. Rubber coating
For the rubber coating we use the Neo-Hooke model
I A
i =5 (I = 3) = uin 13+Z(13—1—21n\/1§) (11)

with the material parameters y = 1.4 N/mm? and A = 500 N/mm?. So, the small strain stiffness of the fibres
is about 700 times higher than that of the rubber material.

3.3. Numerical simulation

The “experimental” results are achieved by a simulation of various tests. The advantage of a “virtual”
testing device is that enough independent test data can be provided easily. This is especially important, if
the material behaves anisotropically, since in this case usually a quite large number of material parameters
has to be determined. The results for uniaxial tension and various biaxial tests are plotted in Fig. 5. A plane

Table 1
Fibre material parameters
Warp thread Weft thread
n=1: w=174.16 N/mm?, o = 14.0 u=169.20 N/mm?, o = 11.3
n=73: u1—3032N/mm o =30.5 = 2.561 N/mm?, oy = 30.5

= —9.362 N/mm?, a0, = —26 #z = —52.865 N/'mm?, o, = —21.5
= —142.573 N'mm?, o, = —26.5 = —86.801 N/mm?, o, = —20.5
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stress state is assumed. The principal values of the second Piola—Kirchhoff stress S; (i = 1,2) are computed
by means of the equation
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(12)

In the latter relation, F; denotes the total reaction force in i-direction and A4, the initial cross-sectional area
perpendicular to the cartesian coordinate X;. It is given by the length of the test sample (10 mm) multiplied
with the thickness (0.3 mm). The magnification of the first test in Fig. 6 shows an unexpected kink at 4.4%
strain (= C; = 1.09) which can be explained as follows.

Since the fibres are not fully extended in their initial configuration (solid line in Fig. 7), one can pull them
in a stress-free state up to the point, where they are stretched straight. The strain at this time is easily
calculated from comparing the initial length of the fibres (L = 10.44 mm) with the length of the test sample
(10 mm). So, the stresses measured in the small strain regime are due to the interaction with the rubber
matrix alone and therefore very small. Beyond this limit, the stress in the fibres increases rapidly (see Fig. 5)
and the stress—strain relationship of the membrane is dominated by the behaviour of the fibres. In the
direction of compression, the situation is in general similar to the small strain case. The fibres do not carry
any load. Consequently, the stiffness of the structure in this direction as well as the bending stiffness is
almost zero.

) F
Sl e g
-
u
u
F F
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Fig. 7. Fibre behaviour: (a) tension and (b) compression.
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4. Continuum mechanical model

The computer model did not only provide “experimental’”” data but let us also gain a deeper under-
standing of the membrane behaviour under different loading conditions. We must differentiate between
three situations: (I) in the small strain regime, the fibres are not effective. The load is carried by the rubber
matrix, i.e. the material behaves isotropically. (II) The compressive range, where the fibres are in general
not effective. In many applications, however, compression in one direction means tension in the perpen-
dicular direction. In this case, we observe transversely isotropic material behaviour. (IIT) For large tensile
strains, the fibres determine the overall deformation behaviour of the membrane (orthotropic material
behaviour). The influence of the rubber matrix then becomes negligible.

4.1. Strain energy function

In order to account for all three situations, the following choice for the strain energy function is ap-
propriate:

W = Wan(l, Is) + Wil (1, I) + Wani(Is, Is, 16, I7) . (13)
—_— Y

iso
Neo-Hooke isotropic (+) orthotropic

The Neo-Hookean part has already been given by Eq. (11). The additional term W

is0

W+

iso

=K (I, = 3)" + K5 (I, — 3)™ (14)

is needed to model the extreme stiffening in the moderate and large deformation case. It is well-known that
the Neo-Hooke model is not appropriate to display the increase of the stress in this range of deformation.
With the last part

Wi :K?ni 1([4 _ 1)/f1 +K£1ni 1(]5 _ 1)/32 +K?ni2(16 _ 1)}’1 +K§mi 2(17 _ 1)"/2
+Kc011p1([1 _ 3)51([4 _ 1)51 +Kcoup2(11 _ 3)52(16 _ 1)52 +Kcoupani(]4 _ l)é([() _ 1)5’ (15)

the orthotropic properties of the fabric are included in the model. Here, we have to take into account that
the material behaves differently in tension and compression.

For this purpose, consider an arbitrary deformation C = C;n; ® n; (Einstein’s summation convention is
assumed to hold over repeated indices). The matrix (M;),; associated with the structural tensor M, takes the
form

100
(M), =10 0 0] (16)
000

The quantities /; (i = 4,5,6,7) are then determined according to Eq. (5) with Iy = Cyy1, Is = C}, + C}, + C3,,
I =Cy and I; = C}, + C3, + C3. If Cj; > 1 and C», < 1, the fibres in warp direction are pulled and the
fibres in weft direction are compressed. Consequently, the parameters in Eq. (15) must be chosen in such a
way that transversely isotropic material behaviour with M; = M as only structural tensor is obtained. The
opposite case can be treated analogously. Compression in warp and weft direction should lead to purely
isotropic behaviour. The requirements discussed in the above are incorporated into the model by imple-
menting the relationships
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K=K invd,  i=1,2,

K2 = K™%inv6, i=1,2,
Kot = Koo linyg, (17)
Kcoup2 — KCOUp2inV6,

Kcoupani — kcoupaniinv4 inv6
In these equations, invi (i = 4, 6) represents a short-hand notation for the expression

o 11 +sign(l;, = 1)) if L,—1#0
—_J2 i i )
invi {0 7120 (18)

Due to the fact that invi is only different from zero (and positive) if 7; — 1 > 0 (i = 4,6) holds, the stress
contributions associated with inv4 and inv6 are “switched-off”” for the compression states C;; < 1 or
Cy < 1, respectively.

Kl gani2 ) geoupl | geoup - greowpani gy 5, and ¢ as well as u (in Wan), K*° and o, in W (i = 1,2) are
material constants which have to be fitted to the “experimental” results shown in Fig. 5. This fit is based on
the assumption of incompressibility, such that the Lamé constant A remains here undetermined. The
function —uln/I; + (A/4)(I; — 1 — 2In+/L;) is then replaced by —p(v/I; — 1), where p denotes the hy-
drostatic pressure. It is even easier to insert the incompressibility condition C; = 1/C,C, directly and to
derive S; and S, in the usual way. In the finite element calculation, A plays the role of a penalty parameter.

Thus, in its present state, the model includes 19 material parameters. Since we deal here with a highly
non-linear problem, it is desirable to reduce this number further. In order to derive physically reasonable
constitutive restrictions, we compute the second Piola—Kirchhoff stress tensor S and the material tensor

o*w
¥ =4 52 (19)

in what follows.

4.2. Second Piola—Kirchhoff stress tensor and material tensor

To calculate the second Piola—Kirchhoff stress tensor, the derivatives of /; (i = 1,2,...,7) with respect to

C

oL, oL oL

c=1l  ge=m-C  ZZ=nc, (20)

ol 05

sc=M, 56=CM+M-C (21)

ols ol

e=M  i=CM+M-C (22)
have to be calculated. Using Eq. (2) in combination with Egs. (11), (14) and (15) leads to

A
Sni=p(1-C™)+ 5 (5= nc, (23)
Si, = 20K (1, — 3)" 1 4 20,K5° (1, — 3) 7 (1,1 = C) (24)

and
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S = 28K Iy — 1PV 4 2B,K35 (15 — 1P (C- My 4+ M, - €) + 29, K3 (g — 1) M
+ 29,K32(L — 1)271(C - My + M - C) + 25,K! [(11 — 37 - )™M
(0= 3)" (= 17 M | 20K02 (1 = 3%l = 1)1+ (1 = 3 (I — 1) M

4 pgKeomwan [(14 DT U= 1M+ (I — D (I — 1)HM2] (25)

Further, we introduce the short-hand notations

oCc™!
@0 = 7@, @oc = (Da)l:/-kle,‘@ej@ek@el, o = 1,2 (26)
(ga)ijkl = %(5jk(M“)il + 5ik(M3¢)jl + (Sil(M“)jk + 5j1(Mx)ik) (27)

and .# denotes the fourth-order identity tensor. This gives us

Pu=2uTy + ALC @ C' — A(l; — 1)@y, (28)

L = doy (o — DKL —3)" 1@ 1 4 doy (o, — DK (L, — 3) (11 = C) @ (11 — C)

+40uK (L -3)" (11— 7) (29)
and
Lani = 4P, (B — DK™ (I, — 1My @ My + 46, (B, — DK (15 — 1)[;272% %
+ 4B,K5M (Is — 1)/}271@@1 + 4y, (p, — DK™ (I — 1)7172M2 ® My + 49, (7, — DK™ (1 — 1)}’272
x%®%+%@mm_wﬂ%+@xwﬂm—wm—wﬂw—wmm

+00(L =3 L =DMy @1 +10M) + (6 — 1)1 = 3)" (I, — D) 7*M, @ M,

+ 48,k 02 [(52 1) =3 U — DP1 @1+ 6,(1 — 3)% (I — 1)
X (My@1+1@My) + (8, — (Il —3)% (s — )My ® Mz}

+ 4gKopan [(é — D)L= 1)l — )My @My + E(L — 1) (I — 1) (My @ My + M @ M)
F(E= D)l — 1) (s — 1) "My @ My |. (30)

The expressions I; —3 (i =1,2) and [; — 1 (j = 5,7) might become negative whereas I, — 1 and /s — 1 are
always positive. Therefore, the exponents «;, f5,, 7, and J; (i = 1,2) have to be positive integers and larger
than 2 (i.e. > 3). Either S or . would contain undetermined terms otherwise. For simplicity, this re-
quirement is applied to all exponents. The undeformed configuration (C = 1) is then automatically stress-
free.

Another important issue is the question of stability. Using the existence theorem of Ball (1977) we have
to prove polyconvexity of the stored energy function (see also Marsden and Hughes (1983)). This yields the
usual restrictions for the material parameters in Wiy (¢ > 0, 4 > —2/3p). In anisotropic elasticity, how-
ever, it is not clear how a polyconvex strain energy function should be constructed. Thus, in order to
achieve stability, we follow here a more intuitive strategy by including the modifications
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K = Kjnvl, i=1,2,
K;SO = 155*°jnv2, i=1,2,
Kl = K3 linvdinvs,
K2 = Kai2iny6inv7,
Kol — geevpliny4 jnvl,

K2 = K 2iny6jnv]

(31)

and the inequalities
K;'so7[€ianil7Kgni27gcoup17Kcoup27[€vcoupani > 07 i = 17 2. (32)
jnvi is determined by

. L1 +sign(f; —3)) if ,—3+#0
— 2 i i ’
e { 0 if I, —1=0. (33)

Note that the small strain stiffness is practically only determined by the Neo-Hooke part of the model,
because the other stress contributions are negligible in this strain range. Therefore, we are able to determine
the shear modulus p in advance to reduce the number of material parameters at least by one. The least
square fit is then carried out in the same way as described in Section 3. The constitutive inequalities can be
incorporated easily. It should be emphasized that we fit our model to the five experiments simultaneously.
In this way, we obtain one set of parameters which shows a very good agreement for all five tests. Re-
stricting the exponents to the range from 3 to 6, the following material parameters (continuum mechanical
model) were computed (see Fig. 5):

= 5.808 N/mm?

K% = 1.145 N/mm?, o0 =4,
Kk =0.318 N/mm?, =6,
Kl = 171.174 N/mm?, p, =3,
Kl = 6.962 N/mm?, B, =3,
K®i2 =179.135 N/mm?, 7, =3,
K2 = 0.00157 N/mm?, 7, =6,
Kcoupl =0 N/mmZ’

KcoupZ =0 N/mmZ’

Keowrani — 5753 N/mm?, & =6.

Using the constitutive restrictions discussed in the above we were able to reduce the number of material
parameters to 15. The parameters which enter the isotropic part of the model lie in the range of 0—10 N/
mm?. As expected, these constants describe mainly the stiffness of the rubber matrix. On the other hand, the
“anisotropic” constants Ki"! and Ki"? are very close to the fibre stiffnesses. Since the anisotropic be-
haviour of the membrane is controlled by the stress state in the fibres, such a result is very satisfying from
the physical point of view. Note again that the fibre stiffnesses are only effective in tension. The accuracy of
the fit could be even improved by including exponents up to 8 or 10.

4.3. Shear tests
To validate the results at this stage, two simple shear tests (plane stress state) were performed.

The calculations were carried out for the computer model (Section 3) and the continuum mechanical
model (Section 4) using the material parameters given there. The boundary conditions for the test and the
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orientation of the fibres are shown in Fig. 8. The displacement perpendicular to the membrane plane is
constrained on one side.

Two basic cases are selected: (a) the fibres lay parallel and perpendicular or (b) at an angle of +45° to the
direction of the shear displacement. In case (a) all perpendicular fibres connect the sheared edges. These
fibres will be stressed with increasing shear deformation. In case (b) some fibres are non-load carrying
members whereas the others connect the sheared edges. With increasing shear deformation, the membrane
behaviour will be dominated by the latter group whereas the first group remains stress-free in this loading
case. In Fig. 9, the reaction forces in shear direction are plotted against the linearized strain of the stretched
fibres.

In the shear test (a) only one set of fibres is loaded. Therefore the direction of the shear displacement is
not important. In case (b), the direction of the shear displacement is changing the result: for the positive
shear angle the stiffer fibres are stretched whereas in the opposite case the weaker fibres carry the load. In
general, good agreement in all cases is found for moderate strains. Note that no data from shear tests were
used to fit the material parameters.

4.4. Reduction to linear elasticity

The motivation behind the use of nine terms in W and 7,, was to make the reduction to orthotropic
linear elasticity possible. The latter step gives some insight into the physical meaning of certain parameters.

Let us require SIO and S,; to be linear in C. To achieve this, the exponents must be chosen according to

(a)

(b)

Shear test Shear test
1000 \ = 900 ‘
o 800 | effective model +45 —— 1
800 effective model —— , 700 | computer model +45 - ]
Z computer model - = effective model -45 %
= = 600 [ computer model -45 -8 1
g 600 1 8 500t 1
s k5 |
- ~ 400 E
o 400 1 @
2 2 300 f 1
» »n
200 - 200 r 1
100 1
0 0
20 0 20

0
Fibre strain [%]

Fig. 9. Force-strain behaviour for shear deformation, different fibre orientations (a) 0/90° and (b) +45°.

0
Fibre strain [%]
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n=2 n=1 (35)
=1, & =1,

E=1.

Note that in order to obtain a stress-free undeformed state, the terms

AWE = —2K5°(I; —3) and AWy = 4K (I, — 1) — 4K2 (I — 1) (36)

must be added to the strain energy function. Finally, the linear model reads

Win = K (I, — 3)" + K5 (L, — 3 = 2(, — 3)) + K (I — 1)> + K& (I — 1 — 4(1, — 1))
+ K2 (L — 1) + K22 — 1 — 4(Ig — 1)) + K< (1 — 3) (I — 1) + K21, — 3)(ls — 1)
+ Ko 1) (Ig — 1). (37)

The second Piola—Kirchhoff stress tensor is given by

6I/Vlin o .
Sin = BE Lin ¢ E, (38)

where E = 1/2(C — 1) denotes the Green—Lagrange strain tensor. Utilizing the equations

Y(E)’ — trE?) = X1 — 3 - 2(1, - 3)),
tr(E* - My) =3 — 1 = 2(L — 1)), (39)
tr(E* - M,) = (5, — 1 = 2(fs — 1)),

the constant material tensor %}, is calculated with

Lin = (8K +4K5) 1 @1 — 4K™°.7 + K™ (M; @ M) + 4K &) + 8K™ (M, ® M,)
+ 4K, + 4K 1 @M, + M, @1) + 4K (1 @M, + M, ®@ 1)
+ 4KV @ M, + M, @ M), (40)

The coefficients of the fourth-order tensors &; and &, are given by

(El)ijkl = (M) + (Ml)jk5f1 and (EZ)fjki = (M2),0; + (M2)jk5il~ (41)

ik
The linear orthotropic model includes only nine constants. In the case of transverse isotropy (M; = M,
M, = 0), this number reduces further to 5 (see also standard text books like Spencer (1984), Jones (1999)).
Using n] = {1,0,0}, the Voigt matrix representation of the material tensor %y, takes the form (subscript
lin omitted)

g3><3 0 :|
¥ = |: stretch o (42)
0 <z Shle

with



9538 S. Reese et al. | International Journal of Solids and Structures 38 (2001) 9525-9544

gKso 8K 8K
+H4KEe | H4KDe
4 8 K'fmi 1
4 8 Kani 1
Liaen = 48 K;up 1 yqgeow! | 4 ggeouw] (43)
symm 8K 8K}°
+4K3°
symm symm 8K
and
[ —2K¥° 4+ 2K | 0 0
shear = 0 ~2K}° 0 ~ “
i 0 0 | 2K} + 2K

The comparison with linear isotropic elasticity yields the relations
K= —lu and K =14+ 2). (43)

The parameters K*™! and K3™! describe the increased stiffness in fibre direction. Among these, K3"! has a
meaning somewhat similar to the shear modulus in isotropic elasticity. It enters the shear matrix which is
not the case for K*!. The parameter K°“P! serves to describe the coupling between the strains in 1- and 2-
as well as in 1- and 3-direction.

Certainly, the non-linear model is far more complicated. However the considerations made in the
context of the linear model are still valid. For instance, look at the parameters K"/ (i = 1,2) and K°upani,
Keourani Jies in the range of the rubber stiffness, because the interaction between the fibres in the two di-
rections is only due to the rubber matrix. The other coupling constants KU’ (; = 1,2) vanish.

5. Finite element formulation

Since pneumatic membranes possess hardly any stiffness in bending or compression, they wrinkle easily.
The same effect is observed in every day life for all sorts of clothing made of fabric. The wrinkling represents
an instability phenomenon like the buckling of shells and plates and is accompanied by a relatively sudden
increase of the displacement in the direction perpendicular to the membrane surface. Certainly, such a
behaviour should be avoided in practical applications. In order to investigate the sensitivity of the mem-
brane with respect to wrinkling, we have to include the bending deformation in the finite element for-
mulation. Many authors work therefore with sophisticated shell formulations. See in the context of
composites e.g. Dorninger and Rammerstorfer (1990), Gruttmann et al. (1993) and Stein and TeBmer
(1998a,b). The coding of such elements is, however, usually elaborate. Moreover, due to the fact that an
integration over the thickness of the shell is necessary, the implementation of three-dimensional material
laws requires further considerations. For these reasons it is desirable to work with brick formulations,
where the continuum mechanical equations can be implemented directly. To use 3D elements for this
purpose is only reasonable from the point of view of computational efficiency, if a locking-free formulation
is available. An appropriate method has been recently developed by Reese et al. (2000) (see also Reese et al.
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Fig. 10. Cylindrical geometry.

(1999)). The latter formulation is based on the classical concept of reduced integration plus hourglass
stabilization (see for small deformations Belytschko et al. (1984)). Exploiting the analogy with the enhanced
strain concept in a linearized form, we are able to determine the so-called stabilization factors in such a way
that locking-free behaviour is obtained. In this way, we obtain an extremely simple and efficient element
which works with only one Gauss point. Note that the calculation of the stabilization factors can be done
analytically as soon as the deformed configuration of the element is known.

In the case of curved surfaces, one has to take into account that the vector n; tangential to the fibre is not
constant. Consequently, we have to compute the structural tensor in each element using information such
as the geometry of the structure and the orientation angle « (see for the example of a cylinder geometry Fig.
10).

The covariant basis

G, = (G ®E) E, (46)
T
can be easily determined by means of the Jacobi matrix J = 0X/0& (X’ Cartesian coordinates, & local
(convective) coordinates). We construct a vector
T; = —@Gl + G; (47)
G

which fulfils the condition G, - T; = 0. Then, T is perpendicular to G; and lies in the plane given by G; and
G;. The “structural vector” n, is calculated using the relationship

n; = cosaG; — sin oTs, (48)

where T; = T3/|T3| and G, = G,/|G,| denote normalized vectors. This procedure is very cheap from the
computational point of view and can be carried out for any shell geometry. Note that in the special case of a
cylinder, we obtain Gj3 = 0 and, as indicated in Fig. 10, G; = T;.

6. Numerical examples

In this section, two examples are discussed in detail. First, the performance of the present brick element
formulation is compared with the one of a classical shell element. In the second example, we investigate the
inflation of a flat membrane.
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Fig. 11. Pinched cylinder: geometry and material parameters.

6.1. Pinched cylinder

The geometry and the material parameters for this example are given in Fig. 11. The cylinder is clamped
at the bottom and consists of unidirectional laminate layers. To carry out a comparison with the shell
formulation of Stein and TeBmer (1998a,b) we work here with the transversely isotropic model of linear
elasticity presented in Section 4.4. In the 3D calculations, we take one element over the thickness per layer,
i.e. one Gauss point in the present element technology. The shell formulation uses also a one Gauss point
integration over the thickness and five degrees of freedom per node. Thus, each shell element is associated
with 20 degrees of freedom, whereas the brick formulation is based on 24 degrees of freedom.

In Fig. 12a, the vertical displacements for a shell structure with one UDL layer (o = 30°) are shown (3D
discretization on the left, discretization with shell elements on the right). As a result of the fibre orientation,
the displacements are point symmetric. Both the values of the displacement and its distribution agree very
well. The same holds for the corresponding stresses in axial direction (Fig. 12b).

In another computation, we assume that the structure shown in Fig. 11 consists of two layers (¢« = 4+30°).
Again, a very good agreement is achieved (see e.g. the stresses in axial direction in Fig. 12¢). Note that these
stresses are not perfectly symmetric because of the thickness effects. The deviation between the 3D and the
shell computation is here larger, since the shell results have been evaluated exactly in the shell midsurface
whereas the stress in the left part of Fig. 12¢ (3D computation) refers to the middle of either the upper or
the lower layer.

Finally, the performance of the two element formulations is compared by means of a study of con-
vergence. The displacement in point A (defined in Fig. 11) is plotted against the number of elements (Fig.
13). For the thick cylinder example (/¢ = 10) the rate of convergence is almost equal. In the case of a thin
shell (r/t = 100), the shell formulation gives more accurate results for less than 1500 elements. For a dis-
cretization with 1800 elements, however, convergence is achieved with both formulations.

6.2. Inflation of a rectangular membrane

The continuum mechanical model (Section 4) was derived on the basis of biaxial and uniaxial tension
tests for the flat membrane (10 x 16 mm, thickness 0.3 mm). In order to build up a pneumatic structure,
such membranes are inflated, i.e. exposed to a deformation-dependent pressure loading. The purpose of this
example is to investigate whether the present material model yields physically reasonable results also in this
case. The material parameters are taken from Eq. 34. In the left half of the system (Fig. 14), the fibres are
lying in horizontal and vertical directions (o = 0°/90°). In the right half, we have the orientation angles
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Fig. 12. (a) Vertical displacement (cm), one layer 30°; (b) PK stress in axial direction (kN/cm?), one layer 30°; (c) PK stress in axial
direction (kN/cm?), two layers 430°.

o = +45°. Due to the fact that a pneumatic membrane structure usually consists of several pieces sewn
together, such discontinuities are characteristic in practical applications.

The boundary conditions are set as follows: all displacements on the outer edges are constrained only on
one side of the membrane. It can therefore rotate around the edge without bending constrains. Non-
conservative pressure loading is applied as indicated in Fig. 15. See for more details Schweizerhof and
Ramm (1984) and Simo et al. (1991). Due to the seam in the middle of the structure, we obtain very
different deformation behaviour in the two pieces (see in particular Fig. 16b).

Fig. 16 shows the 11- and 22-components of the left Cauchy-Green tensor b = F - F" = b;;e; ® e;. The
11-component is continuous whereas the corresponding plot for the 2-direction shows a jump at the seam.
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Fig. 15. Loading and deformed geometry.
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Fig. 16. Strains for the principal directions.

An explanation for this fact can be given quite easily. In 2-direction (long side), we can have different strains
on both sides. Only the displacements have to coincide in the interconnection area. In 1-direction (short
side), also the strains must be equal, since the material on the left and the right side of the seam cannot
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Fig. 17. Cauchy stresses.

move relative to each other. For the Cauchy stresses (see Fig. 17), a discontinuity is found for the 1-
direction whereas the stress field in 2-direction is smooth. This result can be derived from the local equi-
librium condition G - N = Gyigne - M, N being the normal vector of the interconnection area.

7. Conclusions

The main goal of this paper has been to model the anisotropically elastic material behaviour of fibre
reinforced membranes. It has to be taken into account, that moderate deformations (up to 40%) occur.
Unfortunately, experimental results for the stress—strain behaviour are poorly documented in the literature.
So we follow a different strategy. Since test results for the fibres alone are more easily accessible, we begin
with formulating a one-dimensional model for the fibre deformation. The “1D” material parameters are
fitted to the experimental results. As expected, we obtain slightly different values for the warp and the weft
thread. Then we set up a finite element discretization, where the fibres are modeled by means of non-linear
truss elements and the rubber coating by the Neo-Hooke model implemented into a brick element for-
mulation. Simulating various biaxial and uniaxial experiments with such a ‘““virtual” test piece, we are able
to generate sufficient test data. Certainly, these “‘experimental’ results are artificial and cannot replace real
data. However the computer data are much cheaper and still serve to develop a physically reasonable
model. The material parameters can then be fitted also to real test curves, as soon as these are available.
One main advantage is the prediction of response changes due to changes in the fibre direction. As an
additional benefit, we gain a deeper understanding of what happens inside the material.

Of crucial importance is to take into account that the fibres behave differently in tension and com-
pression. For this purpose, we check the values of the invariants and “‘switch-off” certain material pa-
rameters accordingly. In this way, we differentiate between orthotropic (biaxial tension), transversely
isotropic (uniaxial tension or compression) and isotropic material behaviour (biaxial compression). In
order to guarantee the stability of the material law, further restrictions have to be introduced.

The results are promising and are in astonishingly good agreement for all five tests. The model includes
15 material parameters. Considering the complexity of the present material behaviour, this is an appro-
priate number. To control the fit, we carry out two independent shear tests. Agreement is achieved up to
15-20% fibre strain. Note that we do not use the shear tests to fit the material parameters.

The implementation of the material model into a finite element code is straightforward, if one works with
a brick element formulation. To attain satisfactory computational efficiency, a special element technology
is necessary. Here, we work with the stabilization technique recently developed by Reese et al. (2000).
The comparison with a classical shell formulation shows that the 3D element yields a comparable per-
formance. Geometry-dependent structural tensors can be incorporated easily. Further developments should
focus in particular on inelastic effects and deformation-induced anisotropy.
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